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NONLINEAR EQUATIONS OF MOTION

OF AN EXTENSIBLE UNDERGROUND PIPELINE:

DERIVATION AND NUMERICAL MODELING

UDC 532.595:519.633.6V. A. Rukavishnikov and O. P. Tkachenko

Slow motion of a pipeline modeled by a bent rod in a viscous medium is studied. It is assumed that
the displacements of the axial line of the rod are finite and its strains are small. The mutual influence
of the tensile axial force and transverse deflections is taken into account. Equations of motion are
derived and some numerical examples are considered. An approximate estimate of stresses in the
pipeline wall is given.
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Introduction. It is well known that the complex configuration of an underground pipeline can change
owing to the action of an internal fluid flow, initial bending of the axis, and properties of the medium. This is a
slow process resulting in considerable displacements of the axial line. Therefore, an underground pipeline should
be designed with allowance for its motion under the action of three factors mentioned above.

Various formulations and solutions of the problem of motion of a pipeline with a fluid flow inside can be
found in [1–6].

In the present paper, we study slow motion of a curved pipeline modeled by a bent rod under the action of
viscous-fluid flow and nonlinear resistance of the external medium. Finite displacement are allowed, whereas strains
are assumed to be small. Equations of motion are derived with allowance for the axial tensile force T produced by a
transverse displacement of the pipeline. Oscillations of the fluid flow are ignored because the phenomenon studied
has a different time scale.

1. Physical Formulation of the Problem. We consider a pipeline as an elastic hollow rod whose initial
configuration is described by the equations of a plane curve Γ0 = {x, y: x = x0(s), y = y0(s)}, where s is the arc
length.

The rod is immersed in a strongly viscous medium and loaded by a steady fluid flow with a velocity v0. In
the initial state, no external forces act and internal stresses in the rod are equal to zero. Since the external medium
is considered as a viscous fluid, the rod starts to move after loading. The rod ends are assumed to be clamped. It
is required to determine its motion.

The following assumptions are used:
1) the strains of the rod are small, whereas the transverse displacements are finite but small compared to

the rod length and the radius of curvature of the axial line Γ0;
2) the tension of the rod produced by its bending is uniform along the rod;
3) for long periods of time, the external medium is described by the equations of a strongly viscous fluid;
4) the ratio R0/min ρ0 is small (R0 is the pipeline radius and min ρ0 is the minimum radius of curvature of

the axis Γ0);
5) the inertia of the wall and fluid is ignored.
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2. Equations of Motion and Formulation of the Initial Boundary-Value Problem. We find the
normal displacements of the rod wn as a function of the time t and arc length s.

Let an element of a bent pipe of curvature æ0 be loaded by the end and distributed forces (Fig. 1). In
Fig. 1, Q is the transverse force, M is the bending moment, and N is the tensile force. We assume that the axial
distributed loads (axial inertial forces and flow friction) except for the tensile force are negligible as compared to
the transverse loads. In this case, the distributed load applied to the pipeline can be written in the form

qn = −æρfSfv
2
0 + qnr + qns,

where æ(s, t) is the current curvature of the pipeline, v0 is the velocity of the fluid flow, qnr is the resistance force
of the medium per unit length of the pipe, qns is the transverse force due to the tension of the pipeline per unit
length, ρf is the density of the liquid, and Sf is the cross-sectional area of the flow.

Since the curvature and strains of the pipeline are small, we use the expression for the load produced by the
axial tension:

qns = T
∂2wn
∂s2

.

We assume that, for small bending of the curve, the axial force T is constant along the pipeline and has the form [7]

T =
ESt
l

[1
2

l∫
0

(dy
dx

)2

dx− 1
2

l∫
0

(dy0

dx

)2

dx
]
. (1)

Here y and y0 are the current and initial coordinates of the points of Γ, respectively, l is the distance between the
fixed points of the pipeline, measured along the Ox axis, E is Young’s modulus, and St is the cross-sectional area
of the pipe. Given the transverse displacements of the pipe wn, one can find the current coordinates of Γ using the
formulas

x(s, t) = x0(s)− dy0

ds
wn(s, t), y(s, t) = y0(s) +

dx0

ds
wn(s, t). (2)

We note that the second integral in (1) does not vary and is equal to l0 − l (l0 is the initial length of the pipeline
measured along Γ0).

Following [8], we obtain the equation of motion for the unknown displacement wn. Differential equations of
motion of the deformed rod have the form (Fig. 1)

∂N

∂s
+ æQ = 0,

∂Q

∂s
+ æN − qn = 0, Q =

∂M

∂s
.

Below, we use the well-known relations

M = EI(æ− æ0), æ− æ0 =
∂2wn
∂s2

+ æ2
0wn, (3)

where I is the cross-sectional moment of inertia of the pipeline. Since the strains are small, we ignore the products
of the desired function wn and its derivatives. Expressing the current curvature æ in terms of the initial curvature
æ0 and displacement of the wall wn (3), after transformations we obtain

EI
(∂4wn
∂s4

+ 2æ2
0

∂2wn
∂s2

+ æ4
0wn

)
+ ρfSfv

2
0

(∂2wn
∂s2

+ æ2
0wn + æ0

)
− qnr − qns = 0. (4)
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To determine the resistance force of the medium qnr, we consider the motion of an infinite cylinder in a
viscous fluid and solve the Oseen equation [9]

(u′∇)v = − 1
ρsoil

∇p+ ν∆v, ν =
µ

ρsoil
, (5)

where p and v are the pressure and velocity of the medium, µ and ρsoil are the viscosity and density of the medium,
and u′ is the velocity of the medium at infinity relative to the cylinder. Under the adhesion boundary conditions,
the solution of Eq. (5) is known and the resistance force per unit length is given by

qnr = − 4πµu
0.5 + ln |4µ/(γρsoilR0u)|

, (6)

where u is the transverse velocity of the cylinder and γ = 1.7811 is the Maskeroni number. Substituting (6) and qns
into (4), we obtain the equations of motion of a bent pipeline in a viscous medium:

EI
∂4wn
∂s4

+ (2EIæ2
0 + ρfSfv

2
0 − T )

∂2wn
∂s2

+ (EIæ2
0 + ρfSfv

2
0)æ2

0wn

+ æ0ρfSfv
2
0 +

4πµu
0.5 + ln |4µ/(γρsoilR0u)|

= 0,

u =
∂wn
∂t

.

(7)

Equations (7) are supplemented by the homogeneous initial and boundary conditions

wn = 0 for t = 0,

wn =
∂wn
∂s

= 0 for s = 0, s = l0.
(8)

System (7), (8) is a nonlinear initial boundary-value problem for the unknown functions wn and u. The solution
of system (7), (8) adequately describes the pipeline displacements, provided the displacements are small compared
to the initial radius of curvature of the pipeline axis and the hypothesis of plane cross sections is valid. The first
constraint is implied by formulas (3) and the second one, by the assumptions used to obtain the equations of [8].

3. Difference Scheme and Numerical Algorithm for Solving the Problem. To solve problem (1),
(2), (7), (8), we use the two-layer explicit difference scheme for time

EI

h4
s

(wji+2 − 4wji+1 + 6wji − 4wji−1 + wji−2)

+ (2EIæ2
0i + ρfSfv

2
0 − T j)

1
h2
s

(wji+1 − 2wji + wji−1)

+ (EIæ2
0i + ρfSfv

2
0

)
æ2

0iw
j
i + æ0iρfSfv

2
0 +

4πµuji
0.5 + ln (4µ/(γR0u

j
iρsoil))

= 0,

uji =
1
ht

(wj+1
i − wji ), T j+1 =

ESt
l

[1
2

l∫
0

[(dy
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)j+1

i

]2
dx− (l0 − l)

]
,

(9)

yj+1
i = y0i +

(dx0

ds

)
i
wj+1
i , xj+1

i = x0i −
(dy0

ds

)
i
wj+1
i .

Here j enumerates time layers, i enumerates points along the coordinate s, hs and ht are the steps of the coordinate
and time grids, respectively, u is the velocity of the pipe, and æ0i is the initial curvature at the ith point. The
boundary and initial conditions are taken into account in the usual fashion.

According to scheme (9), the calculations were performed as follows. For the known values of wji at the jth
layer, the velocities uji were determined from the first difference equation using Newton’s iterative method. Then
the values of T j+1 and wj+1

i were recalculated using the last formulas of (9). The time step that satisfied the
stability and accuracy requirements was chosen by the trial-and-error method.
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4. Numerical Results. We consider two configurations of the pipeline:

y = C1
A1 −B1(x−D)2

A1 +B1(x−D)2
+ C1; (10)

y = xB2(x−A2)(x− C2). (11)

Here C1 = 10, A1 = 2000, B1 = 0.2, D = 1500, B2 = 0.000002, A2 = 1500, C2 = 3000, and x varies from 0
to 3000 m. The characteristics of the external medium, fluid, and material of the wall are as follows: velocity of the
fluid v0 = 1 m/sec, density of the fluid ρf = 800 kg/m3, density of the soil ρsoil = 1700 kg/m3, viscosity of the soil
µ = 1000 Pa · sec−1, thickness of the pipe wall h = 0.005 m, Young’s modulus of the pipe material E = 2·1011 N/m2,
and pipe radius R0 = 0.3 m.

Figure 2 shows the calculated displacement wn versus time and arc length. In calculations, a period of a
year was considered. In the case of profile (10) (Fig. 2a), the pipeline is initially deformed in the direction of action
of the centrifugal forces and then in the direction of the maximum centrifugal force acting from the side of the fluid,
until this force is balanced by the elastic forces.

In the case of profile (11) (Fig. 2b), the deflection increases in both directions owing to the symmetric
profile. For profile (11), the maximum displacement is greater than that for profile (10). It is worth noting that
the maximum initial curvatures of profiles (10) and (11) are æ01 = 3.73 · 10−3 m−1 and æ02 = 1.22 · 10−3 m−1,
respectively.

Variation in the fluid velocity v0 and medium viscosity µ shows that the velocity u decreases with an increase
in µ and increases with v0.

Calculations were also performed for profiles (10) and (11) in which the tensile force was ignored. For profile
(10), the results are very close to those obtained with allowance for the force T because the maximum displacement
is small. In the case of profile (11), neglect of the tensile force leads to a 50-% increase in the maximum deflection.
This result shows that the force T should be taken into account in the equations of motion. It is worth noting that
no qualitative differences in the pipeline behavior are observed.

5. Estimate of Stresses in the Pipeline Wall. Above, we determined the normal displacement wn as
a function of coordinates and time. From the mechanical viewpoint, however, this does not mean that the problem
is solved completely. For practical applications, it is necessary to estimate the maximum stresses that occur in the
pipeline wall for the final configuration of the axial line. To this end, we assume that all stress-tensor components
are negligible compared to the longitudinal stress σss. The quantity max |σss| is a sum of the bending stresses σ̃ss
and tensile stresses σ̄ss. In this case, we obtain

σ̄ss =
T

St
=
E

l

[1
2

l∫
0

(dy
dx

)2

dx− (l0 − l)
]
.
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To find σ̃ss, we use the elementary theory of beam bending (see, e.g., [10])

σ̃ss = Eỹ/ρ (12)

(ρ is the radius of curvature of the bent beam and ỹ is the distance from the neutral line to the point considered in
the bending plane).

Let the pipeline be bent in the xOy plane. Using polar coordinates, we write ỹ = R cos θ. In formula (12),
we obtain

1
ρ

= æ− æ0 =
∂2wn
∂s2

+ æ2
0wn

(see, e.g., [8]).
Thus, the formula for stresses becomes

σss = ER cos θ
(∂2wn
∂s2

+ æ2
0wn

)
+
E

l

[1
2

l∫
0

(dy
dx

)2

dx− (l0 − l)
]
. (13)

Figure 3 shows the stress versus the axial coordinate and time, calculated by formula (13) for cos θ = 1.
The calculations show that the maximum stress for profile (11) is higher than that for profile (10). Moreover,∣∣∣ max

0<s<l0
σss

∣∣∣ 6 60 MPa for profile (10). These stresses are much lower than the admissible stress [σ] = 140 MPa

for the St. 3 steel. For carbon structural steels used in machine building, the admissible stress varies in the range
60–250 MPa (see, e.g., [11]). Consequently, even in the model problem, the stress approaches the critical value for
certain materials. Since formula (13) is approximate, the problem of calculating stresses in the pipeline walls calls
for a further detailed analysis.

6. Conclusions. A quasi-one-dimensional mathematical model of slow motion of a curved pipeline in a
strongly viscous medium is proposed. It is shown that the equations of a strongly viscous fluid adequately describe
the effect of soil. Test calculations are performed for two profiles of the pipeline and various physical parameters of
the system. Approximate formulas for estimating the stresses in the pipeline wall are given.
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